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We consider a linear quench from the paramagnetic to ferromagnetic phase in the quantum Ising chain
interacting with a static spin environment. Both decoherence from the environment and nonadiabaticity of the
evolution near a critical point excite the system from the final ferromagnetic ground state. For weak decoher-
ence and relatively fast quenches the excitation energy, proportional to the number of kinks in the final state,
decays like an inverse square root of a quench time, but slow transitions or strong decoherence makes it decay
in a much slower logarithmic way. We also find that fidelity between the final ferromagnetic ground state and
a final state after a quench decays exponentially with a size of a chain, with a decay rate proportional to
average density of excited kinks and a proportionality factor evolving from 1.3 for weak decoherence and fast
quenches to approximately 1 for slow transitions or strong decoherence. Simultaneously, correlations between
kinks randomly distributed along the chain evolve from a near-crystalline antibunching to a Poissonian distri-
bution of kinks in a number of isolated Anderson localization centers randomly scattered along the chain.
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I. INTRODUCTION

Phase transition is a fundamental change in the state of a
system when one of its parameters passes through the critical
point. In a second-order phase transition, the fundamental
change is continuous and the critical point is characterized
by divergences in the correlation length and in the relaxation
time. This critical slowing down implies that no matter how
slowly a system is driven through the transition, its evolution
cannot be adiabatic close to the critical point. As a result,
ordering of the state after the transition is not perfect: it is a

mosaic of ordered domains whose finite size �̂ depends on
the rate of the transition. This scenario was first described in
the cosmological context by Kibble1 who appealed to rela-
tivistic causality to set the size of the domains. The dynami-
cal mechanism relevant for second-order phase transitions
was proposed by Zurek.2 It is based on the universality of
critical slowing down and leads to a prediction that average

size �̂ of the ordered domains scales with the transition time
�Q as

�̂ � �Q
�/�z�+1�, �1�

where � and z are critical exponents. The Kibble-Zurek
mechanism �KZM� for second-order thermodynamic phase
transitions was confirmed by numerical simulations of the
time-dependent Ginzburg-Landau model3 and successfully
tested by experiments in liquid crystals,4 superfluid helium
3,5 both high-Tc �Ref. 6� and low-Tc �Ref. 7� superconduct-
ors, and even in nonequilibrium systems.8 With the exception
of superfluid 4He—where the early detection of copious de-
fect formation9 was subsequently attributed to vorticity inad-
vertently introduced by stirring,10 and the situation remains
unclear—experimental results are consistent with KZM, al-
though more experimental work is clearly needed to allow
for more stringent experimental tests of KZM. Quite re-
cently, a new experiment was reported in Ref. 11 where they
observe, for the first time, spontaneous appearance of vortic-

ity during Bose-Einstein condensation �BEC� driven by
evaporative cooling, confirming KZM predictions in Ref. 12.

The Kibble-Zurek mechanism is thus a universal theory of
the dynamics of second-order phase transitions whose appli-
cations range from the low-temperature BEC to the
ultrahigh-temperature transitions in the grand unified theo-
ries of high energy physics. However, the zero-temperature
quantum limit remained unexplored until very recently and
quantum phase transitions are in many respects qualitatively
different from transitions at finite temperature. Most impor-
tantly time evolution is unitary, so there is no damping and
there are no thermal fluctuations that initiate symmetry
breaking in KZM. The recent progress on dynamical quan-
tum phase transitions is mostly theoretical—see Refs. 13–27
and, for an example of a disordered quantum system, Ref.
28—but there is already one significant exception: the ex-
periment in Ref. 29 on a transition from paramagnetic to
ferromagnetic phase in a dipolar BEC. Generic outcome of
that experiment is a mosaic of finite-size ferromagnetic do-
mains, whose origin was attributed to the Kibble-Zurek
mechanism. This explanation is further supported by theory
in Ref. 21.

A majority of theoretical work was devoted to the proto-
typical exactly solvable quantum Ising chain15,16,19,20,26,27,30

HS = − �
n=1

N

�g�n
x + �n

z�n+1
z � �2�

driven by a linear quench

g�t� = −
t

�Q
�3�

from g=� to g=0, i.e., across the quantum phase transition
from paramagnet to ferromagnet at gc=1. Since the system is
gapless at gc, when �Q�1 the evolution becomes nonadia-
batic at
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ĝ − gc � �Q
1/�z�+1� �4�

�see Ref. 15�. The freezeout at ĝ is the closer to gc the slower
is the transition. The Ising critical exponents �=1 and z=1
determine an average size of ferromagnetic domains at g
=0 proportional to the correlation length at ĝ,

�̂ � �Q
1/2, �5�

or final density of kinks �domain walls� at g=0,

d � �̂−1 � �Q
−1/2, �6�

which is proportional to excitation energy density. Other
properties, such as spin-spin correlation functions19,20 or en-
tropy of entanglement between a block of consecutive spins
and the rest of the chain,20 were analyzed in some detail and

they all turned out to be determined by �̂.
While the quench in isolated system �2� seems to be well

analyzed, relatively little is still known about dynamical tran-
sitions in open quantum systems subject to interaction with
environment. Significant progress was made in Ref. 30 in a
“global” case when interaction between the system S with
Hamiltonian �2� and its environment E is described by V
=R��n�n

x�, where R is a Hermitian operator of the environ-
ment. This global model is solvable thanks to its translational
invariance, and its solutions indicate that decoherence is in-
creasing density of excited kinks as compared to an isolated
system. A local model, with system �2� coupled to an Ohmic
heat bath, was analyzed in Ref. 31 distinguishing between
different regimes of parameters where defect production is
dominated by either KZM or external heating. In this paper,
we propose a quite realistic, but still solvable, model of local
zero-temperature decoherence from a static environment. Its
solution predicts dramatic increase in the density d of excited
kinks as compared to an isolated system with d decaying as
only a logarithmic function of �Q.

Motivation for this study is twofold. It comes from both
condensed matter physics, where it is virtually impossible to
isolate a system from its environment, and adiabatic quantum
computation, where a system is initially prepared in a simple
ground state of a simple initial Hamiltonian H0 and then it is
driven adiabatically to a final Hamiltonian H1 whose non-
trivial ground state is the desired solution of a complex com-
putational problem. The computation is complicated by a
quantum critical point somewhere on the way from H0 to H1
which can make the adiabaticity problematic, but see Refs.
26 and 27 for methods on how to circumvent this problem.
Ising chain �2� is a toy model of adiabatic quantum computer
with the final �trivial� ferromagnetic ground state at g=0
playing the role of the desired “nontrivial” ground state.
When the “computer” is isolated from environment, then Eq.
�6� implies that the minimal “computation time” �Q required

to keep the evolution adiabatic or, equivalently, to make �̂
�N is

�Q
isolated � N2. �7�

The “isolated” computation problem is polynomial in N. In
contrast, in our model of decoherence similar argument pre-
dicts

�Q
open � e�N, �8�

which is nonpolynomial in N.

II. ISING CHAIN IN STATIC SPIN BATH

In this paper we couple Ising chain �2� to an environment
E of M spins through the interaction

V = − �
n=1

N

�
m=1

M

�n
xVnm�m

x . �9�

Here �m’s are Pauli matrices of environmental spins. The
spins are static, with HE=0, and the total Hamiltonian is just
H=HS+V.

Initially at t→−� the system is in the ground state �0g→�	
of pure Ising chain �2� with all spins polarized along x. This
assumption is self-consistent in our open system because
large initial energy gap of 2g makes the influence of the
static environment so negligible that the initial states of S
and E can be assumed uncorrelated: �S+E=�S � �E with �S
= �0g→�	
0g→�� and the environment is initially in a pure
state,

�
s1,. . .,sM=−1,+1

cs1,. . .,sM
�s1	 . . . �sM	 . �10�

Here �m
x �sm	=sm�sm	.

After evolution for time 	t reduced density matrix of the
system �S=TrE �S+E becomes

�S�	t� = �
s�

�cs��2U�	t,s���0�	
0��U†�	t,s��

� U�	t,s���0�	
0��U†�	t,s�� . �11�

Here s�= �s1 , . . . ,sM�,

U�	t,s�� = T exp�− i
0

	t

dt�H�t�,s��� , �12�

and

H�t,s�� = − �
n=1

N

��g�t� + 
n��n
x + �n

z�n+1
z � , �13�

with random magnetic fields of the static environment


n = �
m=1

M

Vnmsm. �14�

The overline in Eq. �11� is an average over s� with probability
distribution �cs��2, but it can also be interpreted as an average
over random “disorder” field 
n. �S�	t� is an average over
states U�	t ,s���0�	 obtained in quenches with different disor-
dered Hamiltonians �13�. In this way, our original problem of
a quench in open pure Ising model �2� is mapped to an av-
erage over quenches in isolated random Ising model �13�.

In the following, rather than struggle with the problem in
its full generality, we assume that each spin of the environ-
ment couples to only one spin of the system or, in other
words, each spin of the system has its own local environ-
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ment. Consequently, 
m and 
n are statistically independent
when m�n. We also assume that each 
n has the same
Gaussian probability distribution

f�
� =
e−
2/2�2

�2��2
, �15�

where � is strength of disorder/decoherence.
Hamiltonian �13� belongs to the universality class of the

well-known random Ising chain.32,33 It has a continuous
quantum critical point at gc when

ln�gc + 
� � 
−�

�

d
f�
�ln�gc + 
� = 0. �16�

gc depends on � as shown in Fig. 1�A�. There is no critical
point for ��1.887 when the disorder is too strong. No mat-
ter how weak � is, renormalization group transformations
drive model �13� toward an infinite disorder fixed point with
different critical exponents than in the pure Ising chain: the
random chain has �=2 instead of �=1 and z→� instead of
z=1.33 A straightforward application of standard KZ formula

�1� gives �̂�1, i.e., a domain size that does not depend on
the quench time �Q. A more careful argument in Ref. 28,
going back to the basics of KZM, predicts a logarithmic
dependence,

�̂ �
ln2��Q�

ln2�ln��Q��
, �17�

with a nonuniversal �1. This equation leads to the esti-
mate in Eq. �8�. Since Eq. �17� is based on the universality

class alone, it is valid for any model of this class when �Q is
long enough for the quench to become nonadiabatic, close
enough to gc to be affected by disorder. Estimate �17� was
confirmed by numerics in the model of Ref. 28, where it was
also found that for weak disorder and relatively fast �Q one
recovers Eqs. �5� and �6� as in pure model �2�.

In present effective model �13�, it is simple to estimate
how slow a quench needs to be for Eqs. �5� and �6� and,
more importantly, Eq. �7� to be not valid. Assuming that
influence of 
n is negligible, evolution becomes nonadiabatic
at a field ĝ in Eq. �4�. This assumption is not self-consistent
when the remaining distance from ĝ to gc, ĝ−gc��Q

−1/2, is
less than the strength � of disorder field 
n or, equivalently,

�Q�2 � 1. �18�

Thus, no matter how weak the decoherence is, its influence is
not negligible when the transition is slow enough: �Q��−2.
In consequence, there is a maximal number of qubits

N �
1

�
, �19�

which can be simulated with polynomial efficiency; compare
Eqs. �7� and �18�.

In Sec. III, we present static properties of random Ising
model �13�.

III. RANDOM ISING CHAIN

Here we assume for convenience that N is even, and
following Refs. 28 and 34, make the Jordan-Wigner transfor-
mation �n

x =1−2cn
†cn and �n

z =−�cn+cn
†��m�n�1−2cm

† cm�
introducing spinless fermionic operators cn. Hamiltonian
�13� becomes H= P+H+P++ P−H−P− where P�

= 1
2 �1��n=1

N �1−2cn
†cn�� are projectors on subspaces with

even �+� and odd �−� numbers of c quasiparticles and

H� = �
n=1

N �gncn
†cn − cn

†cn+1 − cn+1cn −
gn

2
� + h.c. �20�

are quadratic Hamiltonians. Here

gn = g + 
n �21�

for short. The cn’s in H− satisfy periodic boundary conditions
cN+1=c1, but the cn’s in H+ must obey cN+1=−c1: what we
call “antiperiodic” boundary conditions.

The parity of the number of c quasiparticles is a good
quantum number, and the ground state has even parity for
any value of g. Assuming that the quench begins in the
ground state we can confine to the subspace of even parity. In
this subspace the quadratic H+ is diagonalized by a Bogoliu-
bov transformation cn=�m=1

N �unm�m+vnm
� �m

† �. The index m
numerates �Bogoliubov� eigenmodes of the stationary
Bogoliubov–de Gennes equations

�mun,m
� = 2gnun,m

� − 2un�1,m
� , �22�

with �m�0. Here we define unm
� �unm�vnm and assume the

antiperiodic boundary conditions: uN+1,m
� =−u1,m

� ,u0,m
� =−uN,m

� .
The eigenstates �unm ,vnm�, normalized so that �n��unm�2
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FIG. 1. �Color online� In �A� the critical gc in Eq. �16� is shown
as a function of � in Eq. �15�. In �B� density of kinks in a ground
state of the random chain Eq. �13� is shown as a function of g for
N=512 and different �’s. In �C� we show correlation coefficient c
in Eq. �31� as a function of g and �. When ��1, c�0.5 in the
ferromagnetic phase below gc�1 and c�0.5 in the paramagnetic
phase above gc. In �D� we show correlator Cr in Eq. �36� between
two kinks in a Cooper pair in the pure Ising chain ��=0�. Cr is
localized below gc=1 and delocalized above. In �E� both Cr and Pn

in Eq. �37� are shown in the ferromagnetic phase at g=0 and �
=0.8. Here N=512 in both �D� and �E�.
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+ �vnm�2�=1, define quasiparticle operators �m=unm
� cn+vnm

� cn
†.

After the Bogoliubov transformation the Hamiltonian be-
comes H+=�m=1

N �m��m
† �m− 1

2 � which is a simple-looking
sum of quasiparticles. However, thanks to the projection
P+H+P+ only states with even numbers of quasiparticles be-
long to the spectrum of H.

When g=�=0 final system Hamiltonian �2� has N degen-
erate quasiparticles with �=2. We choose an orthonormal
basis,

unm
�0� =

1

2
��n+1,m − �n,m� , �23�

vnm
�0� =

1

2
��n+1,m + �n,m� , �24�

antiperiodic in n. These eigenmodes define Bogoliubov qua-
siparticles �m

�0� which are simply kinks localized at bonds
between sites m and m+1. The kinks are related to quasipar-
ticles �unm ,vnm� at finite �g ,
� by a Bogoliubov transforma-
tion,

�a = Uba
� �b

�0� + Vba
� �b

�0�†, �25�

where

Uba = �
n

�unb
�0��una + vnb

�0��vna� , �26�

Vba = �
n

�vnb
�0�una + unb

�0�vna� , �27�

leading, for example, to a simple expression for average kink
density in the ground state �0g,
	 of Hamiltonian �13� as fol-
lows:

d�g,�� =
1

N

0g,
��

m=1

N

�m
�0�†�m

�0��0g,
	 =
Tr V†V

N
, �28�

as shown in Fig. 1�B�. It is finite at any g�0, both in the
ferromagnetic �g�gc� and paramagnetic phases �g�gc�,
but—as we will see—kink-kink correlations are qualitatively
different in the two phases.

These correlations can be indirectly probed by average
fidelity F between the final ground state �0	 of HS at g=0
�state with no kinks ��0�� and ground states �g ,
n	 at finite g
or �;

�0g,
	 = Ne1/2�a,b=1
N Zab�a

�0�†�b
�0�†

�0	 . �29�

Here Z=V��U��−1 and N is a normalization factor. The aver-
age fidelity is

F = 
0�0g,
	
0g,
�0	 = 1/��
n=0

N/2
1

�n!�2 
0��Ẑ†�nẐn�0	�
= Det�1 + Z†Z�−1/2. �30�

Here Ẑ� 1
2�abZab�a

�0�†�b
�0�† for short.

We found that the fidelity is exponential in N;

F�g,�,N� � �1 − cd�N, �31�

when F�1. Here d�g ,�� is the density of kinks in Eq. �28�
and Fig. 1�B�. The coefficient c�g ,�� is shown in Fig. 1�C�.
For weak disorder, when ��1, we have c� 1

2 when g�gc,
with c increasing toward 1 when g�gc or ��1. These two
limits can be explained as follows.

When the magnetic fields gn=
n+g in effective Hamil-
tonian �13� are strong, because either g or � or both are
strong, then in any ground state �0g,
	 all spins are polarized
along �x. Fidelity to the �z ferromagnet is F=1 /2N, and den-
sity of kinks is d=1 /2; hence, F= �1−cd�N with c=1. This c
is consistent with the data shown in Fig. 1�C� when g or � is
strong.

In the opposite limit of weak magnetic fields �gn�= �g
+
n��1, the ground states are

�0g,
	 � �
n=1

N �↑n	 �
gn

4 �↓n	

�1 +
gn

2

16

. �32�

Their fidelity to the �z ferromagnet is

F = �
n=1

N
1

1 +
gn

2

16

� �1 −
1

2
d�N

, �33�

when F�1. Here d= 1
8gn

2�1 is small density of kinks and
c=1 /2. This c is consistent with the data in Fig. 1�C� when
��1 and g�gc�1.

It is interesting to interpret the widely different values of
1
2 �c�1 in terms of a simple Poissonian model where each
of N bonds is either excited �with probability dexc� or not
excited �with probability 1−dexc� independently of other
bonds. Here dexc is average density of excitations. The fidel-
ity is a probability that none of the N independent bonds is
excited

F = �1 − dexc�N. �34�

Comparing Eqs. �31� and �34� we obtain density of indepen-
dent excitations,

dexc = cd . �35�

We can conclude that c=dexc /d measures correlations be-
tween kinks: c�1 means bunching, and an eventual c�1
would mean antibunching of kinks randomly distributed
along the spin chain.

This simple interpretation of c follows from the fact that
any ground state �0g,
	 is a Bardeen-Cooper-Schrieffer �BCS�
state of kinks ��0�; see Eq. �29� where Zab is a wave function
for a �Cooper� pair of kinks. Depending on g and �, this BCS
state can be either a condensate of tightly bound Cooper
pairs of kinks �with c=1 /2� or just a weakly coupled BCS
state with pairing �anti-�correlations manifesting as the �anti-
�bunching of kinks.

The BCS state is particularly simple at weak magnetic
fields gn=g+
n when, crudely speaking, the ground state
�0g,
	 in Eq. �32� is approximately the ferromagnet
�↑1↑2 . . .↑N	 but with occasional spins reversed to �↓n	 by
weak magnetic fields gn�n

x. Each reversed spin is a tightly
bound Cooper pair of two kinks sitting on nearest-neighbor
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bonds with a relative distance of r=1 lattice sites between
the two kinks. No wonder that dexc=d /2 in this case.

As we could see in Fig. 1�C�, the picture with tightly
bound Cooper pairs is accurate for weak disorder in the fer-
romagnetic phase, but with g increasing above gc the Cooper
pairs begin to dissociate into free kinks and antikinks and c
increases well above 1

2 . This dissociation can be clearly seen
in Fig. 1�D� where we show a correlation function Cr,

Cr � �
m

�Zm+r,m�2, �36�

between two kinks making a Cooper pair. Here Za,b is the
un-normalized wave function of a Cooper pair of two kinks
in BCS state �29� and r is a relative distance between the two
kinks. The Cr shown in Fig. 1�D� is localized when g�
=gc �tight Cooper pairs� and delocalized when g�gc �disso-
ciated pairs�.

A similar Cr is shown in Fig. 1�E� for a finite �=0.8 in the
ferromagnetic phase at g=0. In addition, the same figure
shows reduced probability distribution,

Pn � �
m

�Zm,n�2, �37�

for a single kink. Unlike in the pure case, this Pn is not
uniform and shows Anderson localization.

In the ferromagnetic phase below gc all kinks are bound
into tight Cooper pairs. The small density of Cooper pairs,
each of them a tightly bound pair of kink and antikink, does
not destroy long-range ferromagnetic order in �z. With g
increasing above gc the transition to the paramagnetic phase
takes place when the Cooper pairs begin to dissociate into
free kinks and antikinks which scramble long-range ferro-
magnetic correlations.

In the context of adiabatic quantum computation there are
two generally accepted measures of how far the final state
�S�0� from the desired final ground state �0	 is. One is energy
of excitation of the final state above the energy of the desired
final ground state, and the other is fidelity between the final
state and the final ground state. Both quantities are tractable
in our model, where the excitation energy is proportional to
the number of kinks. We study them in the following Secs.
IV and V.

IV. DENSITY OF KINKS AFTER A QUENCH

In our simulations of a quench the system is initially pre-
pared in its ground state at a large initial value of g�1, i.e.,
in a Bogoliubov vacuum state for quasiparticles at an initial
g�1. As the magnetic field is being turned off to zero across
gc, the state of the system ���t�	 is getting excited from its
adiabatic ground state. However, in a similar way, as in Refs.
16 and 28, we use the Heisenberg picture where the state
remains a vacuum for quasiparticle operators,

�̃m = unm
� �t�cn + vnm

� �t�cn
†, �38�

with the Bogoliubov modes unm�t� and vnm�t� solving time-
dependent Bogoliubov–de Gennes equations

i
dun,m

�

dt
= 2gn�t�un,m

� − 2un�1,m
� . �39�

Initially each mode is a positive frequency eigenmode of
stationary equation �22�. Equation �39� was integrated by a
split-step method for each realization of 
n. Their solutions
unm

� �0� at the final g=0 determine final states ���0�	 whose
average over disorder gives final density matrix �s�0�
= ���0�	
��0��. For each realization of 
n, a final state ���0�	
is a vacuum for �̃m’s which are related to the kinks �m

�0� by
transformation �25�. Final densities of kinks follow from Eq.
�28�.

For system Hamiltonian �2� at the final g=0 the final ex-
citation energy is simply twice the final number of kinks
excited in the desired ferromagnetic ground state. In Fig. 2
we show density of kinks d as a function of g�t�. For the
early large g the density follows the density d�g ,�� in a
ground state �0g,
	, which is also shown in Fig. 1�B�, but as
the quench is approaching the critical point gc�1 the evolu-
tion becomes nonadiabatic and the density d is excited above
its ground-state level d�g ,��. The slower the quench is, the
closer to the critical point the nonadiabatic stage begins and
the quench is probing the critical point more closely.

The final density of kinks at g=0 is shown in Fig. 3�A�.
For large �Q, the density tends to saturate at d�g=0,��,
shown in Fig. 1�B�, i.e., the density of kinks in the ground
state of random Hamiltonian �13�. In Fig. 3�B� we show a
difference �d=d−d�g=0,�� which can be attributed to the
nonadiabaticity of the transition described by KZM. If �d
=�Q

w, then in the log-log plot of Fig. 3�B� we would see a
line log10 �d=log10 +w�log10 �Q�, but this is not the case
when �Q��−2 as in Eq. �18�. At best we can think of a local
slope w��Q� which can be estimated by fitting to pairs of
nearest-neighbor data points. In the legend we give ranges of
local slopes w obtained for different �’s �with error bars on

0 1 2 3

g(t)
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0.4

d

τ
Q
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τ
Q

= 4

τ
Q

= 8

τ
Q

= 16

ground state

FIG. 2. �Color online� Density of kinks during a quench as a
function of g�t�. Here each plot is a single realization with �=0.1
on a lattice of N=512 sites. For the early large g the density follows
the density d�g ,�� in a ground state �0g,
	, but as the quench is
approaching the critical point gc�1 the evolution becomes nona-
diabatic and the density gets excited above its ground state level.
The slower the quench is, the closer to the critical point the nona-
diabatic stage begins and the quench is probing the critical point
more closely.
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their last digits�. For weak � and small �Q the slope w is
close to the −1 /2 characteristic for pure model �2�: fast
quenches, when �Q��−2, become nonadiabatic far enough
from the critical point not to see any effect of weak disorder.
At stronger � or longer �Q the local slopes are less steep and
for a fixed � they become less steep with increasing �Q. For
example, at the strongest �=0.8 the local slope falls to a
mere �w�=0.04 for the longest �Q. These observations are
consistent with the predicted logarithmic dependence of the

dynamical correlation length �̂ in Eq. �17�.

V. FIDELITY AND CORRELATIONS AFTER A QUENCH

In the context of adiabatic quantum computation, it is
important to know how close the final state �S�0� to the de-
sired ground state of the final Hamiltonian HS is. The close-
ness is measured by fidelity,

F = 
0��S�0��0	 = 
0���0�	
��0��0	 , �40�

given by Eq. �30�.
Without decoherence, or in a pure Ising chain with �=0,

the fidelity can be obtained analytically from the exact solu-
tion in Refs. 16 and 20. F is a probability that not a single
pair of ��0� quasiparticles with opposite quasimomenta �k ,
−k� is excited after a quench, F=�k�0�1− pk�. Here pk
�exp�−2��Qk2� when �Q�1. When Nd�1 we obtain

ln F � −
Nd

2


0

�

ds ln�1 − e−s2
�


0

�

dse−s2
� − 1.3Nd . �41�

Here d=�−�
� dk

2� pk=1 /2��2�Q. F is exponential in N as in the
static case of Eq. �31�. Given that d�1 for �Q�1 we obtain

that c�1.3�1, implying antibunching of kinks.
The antibunching can also be seen in the state ���0�	 after

a quench which is a BCS state of kinks in Eq. �29�. Figure
6�A� shows a probability distribution Pn for a kink in Eq.
�37� and the correlation function Cr between two kinks in a
Cooper pair in Eq. �36� after a quench with �=0 and �Q
=16. We have C0=0 because the kinks are fermions, there is
a broad maximum in Cr in the range �r�=20. . .40, and a flat
distribution for �r��40 when the Cooper pair is dissociated.
If Cr were flat everywhere �except r=0�, then c=1, but the
broad maximum means that even when the kinks get close to
each other they prefer to keep a safe distance in the range of
20. . .40. This short range repulsion is consistent with the
antibunching observed in Eq. �41� where c=1.3�1.

The same antibunching can also be seen in the ferromag-
netic correlation function after a quench at g=0,


�i
z�i+R

z 	 � exp�− 1.55Rd�cos�2.95Rd − �� , �42�

accurate when 1�R���Qlog �Q �see Ref. 20�. The oscilla-
tory cosine factor means that kinks tend to order into a crys-
tal lattice. This very imperfect crystalline order implies the
antibunching seen in c=1.3�1. We can conclude that in the
state after a quench with �=0 there is a similar connection
between c, Cr, and ferromagnetic correlations as in the static
case.

For quenches with ��0 we also find an exponential tail,

F��Q,�� � �1 − cd�N, �43�

when F�1 �compare panels B and D in Fig. 4�. Here
d��Q ,�� is an asymptotic value of average kink density ob-
tained for a sufficiently large lattice size N such that
Nd��Q ,���1 �see panels A and C in Fig. 4�. In contrast,
when N�1 /d��Q ,��, then a finite gap at g=gc results in an
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FIG. 3. �Color online� In �A� final density of kinks at g=0 is
shown as a function of �Q on a N=512 chain. For large �Q the
density tends to saturate at the average density of kinks dg=0,� in the
ground state of random Hamiltonian �13� shown in Fig. 1�B�. In �B�
we show difference �d=d−dg=0,� which is density of kinks excited
above the ground state of the random Hamiltonian at g=0. This
difference can be attributed to the nonadiabaticity of the transition
described by KZM.

FIG. 4. �Color online� In �A� and �C� final kink density d for
different �Q as functions of lattice size N for �=0.1 �panel A� and
�=0.8 �panel C�. In �B� and �D� fidelity F for �=0.1 �panel B� and
�=0.8 �panel D�. With increasing N the density saturates at an
asymptotic d��Q ,�� when N�1 /d��Q ,��. In the same asymptotic
regime the fidelity becomes exponential in N. Here the averages are
taken over NR realizations with NRN�2048.
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adiabatic transition and a final density of kinks which is less
than the asymptotic d��Q ,�� for large N.

Fits to the exponential tails of fidelity in Figs. 4�B� and
4�D� give correlation coefficients c for different �Q and �
which are shown in Fig. 5. For comparison, we also show in
the same figure c at �=0 which saturates at c=1.3 when
�Q�1. The results suggest that for a strong � or large �Q,
when even a weak � has strong effect, the correlation coef-
ficient decays toward c�1, suggesting random Poissonian
trains of kinks and exponential ferromagnetic correlation
functions.

This picture is corroborated by typical correlation func-
tions Cr and probability distributions Pn shown in panels
B–E of Fig. 6. Here it is clear, especially for the larger �Q
=1024 �green� or the stronger �=0.8 �panels C and E�, that a
kink gets localized in isolated Anderson localization centers.
A close inspection of corresponding Cr’s reveals that Cr is
localized at r’s equal to distances between the localization
centers in Pn. There is only one exception from this rule: Cr
is negligible when r�0 or N because, apparently, a �Cooper�
pair of fermionic kinks avoids being trapped in the same
localization center. It seems that each kink in a Cooper pair
chooses its localization center at random, independently of
the other kink, except for avoiding the same localization cen-
ter. A quantitative proof of this simple picture is provided in
Figs. 7�B� and 7�C� where we plot a convolution,

PPr = �
n=1

N

PnPn+r. �44�

If the two kinks in a Cooper pair were independent, then this
convolution would reconstruct the corresponding Cr’s in
Figs. 6�B� and 6�C�. Comparing panels B and C in the two
figures we see that it does, with the expected exceptions
when r�0,N and in the case of a fast quench ��Q=16� at
weak �=0.1 �black in Fig. 6�B��. We can conclude that, with
some idealization, for long �Q or strong �, final kinks are
distributed as if each kink was choosing at random one of the
isolated Anderson localization centers randomly distributed
along the chain. This approximate Poissonian model is con-
sistent with the observed c�1.

When �Q�2�1, then the final states at g=0 are qualita-
tively different from the ground state of random Hamiltonian

�13� at g=0: the �green� fragmented Cr’s in Figs. 6�B� and
6�C� are qualitatively different from the �black� Cr in Fig.
1�E� localized around r=0. In other words, all kinks in the
ground state, of density d�g=0,��, are tightly bound into
Cooper pairs which do not destroy ferromagnetic long-range
order; while all kinks in a final state, of density d, contribute
to exponentially decaying ferromagnetic correlations even
though for slow quenches the difference �d=d−d�0,��,
whose origin can be attributed to nonadiabaticity, is small as
compared to d�0,��.

These striking properties of the final states after a quench
are inherited from the ground state of the random Hamil-
tonian �13� just above gc. Its properties are relevant here
because, as we could see in Fig. 2, in a slow quench a state
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FIG. 5. �Color online� Correlation coefficients c for different �Q

and � obtained by linear fits to the exponential tails of fidelity in
Figs. 4�B� and 4�D�.
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FIG. 6. �Color online� In �A� a correlation function Cr between
two kinks in a Cooper pair and probability distribution Pn for a kink
on a N=512 periodic lattice after a quench with �=0 and �Q=16. In
�B�–�E� we show typical final Cr and Pn after quenches with �
=0.1,0.8 and �Q=16,1024. Here all Cr and Pn for a given � come
from the same realization of disorder 
n. Both Cr and Pn show
Anderson localization. When �Q or � are large, then Cr is localized
around those r’s which can be identified as distances �modulo peri-
odic boundary conditions� between the localization centers in the
corresponding Pn, with the exception of r�0 which is avoided
because two fermionic kinks do not like to choose the same local-
ization center.
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FIG. 7. �Color online� In �B� and �C� convolutions in Eq. �7�
corresponding to Cr’s in Figs. 6�B� and 6�D� obtained from distri-
butions Pn in Figs. 6�D� and 6�E�. Except for �Q=16, �=0.1 �black
in panels B�, the convolutions are very close to their corresponding
Cr’s everywhere apart from r close to 0 �and N�.
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���t�	 follows an adiabatic ground state of the random
Hamiltonian until a ĝ just above gc when, in accordance with
KZM, the evolution becomes nonadiabatic. In Fig. 8, we
show some properties of the ground state just above gc where
Pn is fragmented into isolated localization centers, and Cr is
identical with PPr everywhere except r=0. Apparently, the
following evolution from ĝ to g=0 does not change this
qualitative picture.

VI. CONCLUSION

A static spin environment increases nonadiabaticity of the
transition in a dramatic way: density of quasiparticles �kinks�

decays no longer as a power of the transition time but in a
much slower logarithmic way. This means, in the context of
adiabatic quantum computation, that coupling to a static en-
vironment may transform a polynomial computational prob-
lem into a nonpolynomial one.

Fidelity between a final state after a quench and the de-
sired final ground state decays exponentially with a chain
size. The rate of this decay is equal to the density of kinks
times a correlation coefficient equal, for fast transitions and
weak decoherence, to 1.3 and, for slow transitions or strong
decoherence, close to 1. Corresponding kink-kink correla-
tions are, respectively, antibunching in a near-crystalline or-
dering and a simple Poissonian distribution of kinks in iso-
lated Anderson localization centers randomly distributed
along a chain.
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